-

Taylor & Francis &/ MAA

v ATHOEIMICAL AES0CATION OF LBE R
Taylor & Francis Group [

What is a Napierian Logarithm?
Author(s): Raymond Ayoub

Source: The American Mathematical Monthly , Apr., 1993, Vol. 100, No. 4 (Apr., 1993),
pp. 351-364

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of
America

Stable URL: https://www.jstor.org/stable/2324957

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

Taylor & Francis, Ltd. and Mathematical Association of America are collaborating with JSTOR
to digitize, preserve and extend access to The American Mathematical Monthly

JSTOR

This content downloaded from
138.202.129.187 on Mon, 18 Mar 2024 22:25:08 +00:00
All use subject to https://about.jstor.org/terms


https://www.jstor.org/stable/2324957

What Is a Napierian Logarithm?

Raymond Ayoub

§1. INTRODUCTION. The invention of logarithms in 1614 by John Napier, baron
of Merchiston in Scotland, is one of those rare parthogenic events in the history of
science—there seemed to be no visible developments which foreshadowed its
creation. The subsequent progress completely revolutionized arithmetic calcula-
tions in various areas of science, especially in astronomy. It is startling to realize
that the spectacular, if not miraculous, development of computers in the last two
decades has rendered tables of logarithms, and the portable version—the slide
rule—essentially obsolete.

This was not always so. A generation ago, the use of tables of logarithms was an
integral part of secondary education. A student had to learn the meaning of the
terms logarithm, base, antilogarithm, mantissa, and interpolation and had to learn
to use the tables. Moreover, the tables were either to base 10, earlier called
“Briggsian” or to base e earlier called “hyperbolic” and before that “Napierian”.
The logarithms invented by Napier were closely allied to, but not the same as,
hyperbolic.

Over the years, various authors have vied with one another to produce tables of
greater precision as well as ease of use. Indeed as recently as 1964, a table of logs
to 110 decimal places was published under the auspices of the Royal Society.

The purpose of this essay is to explain Napier’s discovery and in the process
answer the question of the title. The writer is motivated in part by the fact that
historical accounts are either sketchy or inaccurate or both. We shall refer to some
of these at the appropriate place in the narrative. Napier’s ideas are, as we shall
see, quite subtle and many writers have failed to appreciate their brilliance and
depth.

Napier was born at Merchiston near Edinburgh in 1550 and died in 1617. It is
worth noting that Descartes lived from 1596 to 1650 while Newton lived from 1642
to 1727, the Principia having been published in 1687. Thus the mathematical tools
available to Napier were decidedly limited. We should stipulate that the laws of
exponents were, by then, well understood. Napier’s ideas exhibited a remarkably
clear conception of the logarithmic function, the term “logarithm” having been
coined by Napier himself. This was at a time when the concept of function was
only vaguely understood by the scientific community of his day.

Moreover, he perfected the notation for the decimal representation of numbers,
his notation being essentially that in use today. The decimal representation of
numbers had been earlier described by S. Stevin, who built upon earlier work, and
whose notation was not as elegant as Napier’s.

Two books were published on logarithms. The first in 1614 was titled “MIRIFICI
LOGARITHMORUM CANONIS DESCRIPTIO” which has been translated as
“Description of the wonderful canon of logarithms.” This contains a table of
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logarithms together with rules for the solution of triangles, both plane and
spherical, with the use of the “canon.”

The second was published posthumously in 1619 and was titled “MIRIFICI
LOGARITHMORUM CANNONIS CONSTRUCTIO” or “Construction of the
wonderful canon of logarithms.” It is in this work that he gives an account of the
method by which the table was constructed as well as the properties of his
logarithmic function, properties essential to the construction. It is this account that
we propose to analyse and upon which we shall elaborate.

Before proceeding, we should add parenthetically that Napier was well-known
and highly esteemed in theological circles for his analysis and interpretation of the
Book of the Revelation of St. John the Divine!

§2. THE PROBLEM. The end of the 16th and beginning of the 17th century was a
period of profound astronomical research with such celebrated scholars as
J. Kepler (1571-1630), Tycho Brahe (1546-1601), Galileo Galilei (1564-1642). The
need for carrying out elaborate calculations involving trigonometric functions was
very pressing. It was therefore urgent that some procedure be sought to shorten
the labor required to perform these calculations. One such aid was the use of the
identity 2sin A4 sin B = cos(4 — B) — cos(A4 + B) which was given the tongue-
twisting name of prosthaphaeresis. There is some evidence that the method was
used by Brahe and his assistant Wittich to whom the method is sometimes
attributed. Another was the use of identity 4 AB = (A + B)?> — (4 — B)?, which
is sometimes referred to as the method of “quarter squares”.

Clearly these were inadequate. Ideally, what was needed was a function from
(R%,+) to (R, +) which converted multiplication to addition, in other words, a
logarithmic function.

With the laws of exponents in mind, the most obvious approach to defining such
a function is to begin with a fixed real number ¢ (which, in what follows, we take to
be < 1), calculate b, = c¢” (n = 1,2,---) and call n the logarithm of b,. More-
over we need only calculate ¢” for n = 1,2,..., k where k is that value which
makes c* about 1/2. For if b =c™ >1/2, we find [ so that « = b/2' with
a < 1/2 and then log b is determined by log a and log 1/2.

Reasonable though this approach may be, it is subject to difficulties which are
not easily overcome and which we now describe. Moreover, we begin by imposing
reasonable restrictions.

(i) The value of ¢ should be chosen so that the calculation of ¢"(n € N) is
arithmetically simple.

(i) The value of c¢” should not decay too rapidly i.e. the values ¢” and ¢
should be relatively close to one another.

(iii) Given two values ¢” and c¥, if a is such that, ¢” < a < ¢°, we require a
method for finding « such that a = c® The method should be accurate
and easy to use.

(iv) The labor of carrying out the needed computations should be within
manageable bounds.

n+1

Napier defines a mapping, which we describe in detail below, and is thereby led
to choose ¢ =1 — A with A = 107¢ and o € N. Let us stress at once that these
powers are reference points and are the basis upon which the canon is constructed.
As we shall see, the choice of o determines the degree of accuracy of the final
product.
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If we write a,, = A~'(1 — A)™ (m € N), then a,, conforms to requirements (i)
and (ii) for a,, = a,,_, — Aa,,_,. Since a,,_,A is merely a shift of decimal, the
value of a,, is easily obtained from a,,_; by a simple subtraction. The arithmetic
could hardly be simpler. Moreover, with a proper choice of o, a,, can be made to
decay as slowly as we please.

Let b, = c", and suppose we take log b, = n. If then a is such that c"tl<a<
c¢”, and we find log a by linear interpolation, the error E satisfies

1
E| < > 1073 and is relatively sharp.

Suppose c* is about 1/2 with ¢ = A(1 — 107°), then k is about 7 X 10°. If
therefore we aim for 7 figures of accuracy, we must choose o = 7 thus necessitat-
ing initially 7,000,000 calculations. This is an overpowering amount of labor. In
addition, we have the labor of interpolation.

We state at once that this is not the method adopted by Napier.

It seems to this writer virtually certain that as Napier embarked on his project,
he soon perceived the shortcomings of such a comparatively straightforward
approach. He therefore sought and discovered an alternate route, deeper, more
effective and ultimately successful. There is evidence that Napier started to think
about the problem around 1594 but there is no record of any of his false starts. We
should remark that a Swiss contemporary named JOST BURGTI used this straight-
forward approach and published a table in 1620 well after Napier’s work had been
recognized and widely appreciated. Burgi’s table proved to be of very limited use.

§3. PRELIMINARY REMARKS. Napier’s motivation was the simplification of
calculations related to the solutions of triangles, especially spherical triangles
which were crucial in astronomy. In Napier’s day and indeed for some time
thereafter, the sine of an angle was not viewed as a ratio. It was taken to be the leg
of a right triangle. More specifically, suppose we have a circle of radius r and an
angle 6.

ari
N

Then sine of § was taken to be 4B. The fact that the sine changed with the radius
was not a serious impediment.

Napier sets out to construct a table which consists of the logarithms of sin 6. In
this table Napier chooses r = 107 and his table consists of logarithm 107sin 6
(30° < 8 < 90°) and at increments of 1. Thus, although he has in mind applica-
tions to trigonometry, the table is in reality a table of logarithms ranging from 10’
to 107 /2 with increments which are not arithmetic but “geometric”. Finally we
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note that although the words “cosine” and “tangent” had not yet come into use,
his table includes logs of cosines and tangents.

Moreover, let us stress that we have used the word “logarithm” generically.
Napier’s logarithms, which we shall denote below by LN(x), have somewhat
different properties from the standard function log x, which as we know, defines
an isomorphism of (R*%, - ) and (R, +). These differences are not significant but
have led to misinterpretations by some historians. Even the redoubtable French
general has implied mistakenly, that Napier’s function was an isomorphism from
(R*, ) to (R, +). This assumption is also inherent in other authors’ assertion that
Napier chose the base e or the base 1/e. Though not an isomorphism, the
fundamental idea, however, of accurately converting multiplication to addition is
essentially preserved.

§4. THE CONSTRUCTION. To determine a correspondence between a set in
“geometric progression” and one in “arithmetic progression”, that is, an exponen-
tial mapping which is the key element in defining a logarithmic function, Napier
ingeniously resorts to a model from mechanics. It is based on the simple idea that
the displacement of a point which moves with constant velocity is ‘“arithmetic”
while the displacement of a point which moves with a velocity proportional to the
displacement is “geometric”’. The correspondence between two such points defines
the required mapping. Here is Napier’s model. Let 7S be a segment of fixed
length
w = 10".

The choice of the fixed length 7S is motivated by the fact that Napier was
interested in logarithms of sin # and is not a whimsical one! Given his objective,
the choice was perfectly reasonable, the value for w being dictated by the degree
of precision desired.

©

Ol
t~

Figure 1

Let OL be another line extending to infinity. At ¢ = 0, let the points start at T
and O respectively. The point Q moves on OL with constant velocity v,. The
point P moves on TS in such a way that its velocity is proportional to the distance
PS and we assume its velocity at T to be v,. The velocity of P therefore, decreases
from vy at T to 0 at S.

If at a time ¢, the point P is at a distance x from S, i.e. PS=x and Q at a
distance y from O, i.e. OQ =y, then Napier defines

y = logarithm of x.
We shall write
y = LN(x) (1)
to distinguish this function from the standard logarithm. We shall shortly establish
the connection between the two.
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Evidently
LN(w) =0, (2)

since when P is at T, we have PS = w while OQ = 0.

Before proceeding to the table of logarithms, let us use mathematics not then
available to Napier to see exactly what his function LN(x) is.

We have by Napier’s conditions,

dx
T —kx
and at ¢t = 0, x = w and dx/dt = vy. Hence k = vy/w.
Since
dy
I =10v,, Wweget
dy w
Ty v -wlnx +c
But when t =0, x =w and y = 0, hence ¢ = w Inw or finally
LN(x) = w(lnw — In x)

o2

Many writers correctly state this fact about Napier’s logarithms but it is not very
illuminating except to verify that his logarithmic function is not an isomorphism. It
is moreover, disingenuous to imply that he clumsily used a complicated function
when he could have used a simple one! From (6) we have

LN(ab) = LN(a) + LN(b) — wlnw;
hence
LN(ab) # LN(a) + LN(b).

A simple transformation however, gives LN(x) a more familiar form. Let j =y /w,
X = x/w, then, from (6)

y=—-lnx=log,, X.

This fact has led many writers to state erroneously, that Napier chose e or 1/e as
the base of his logarithms. Napier’s function is not an isomorphism, though, as we
have remarked above, closely related.

It is interesting to observe that a modification of Napier’s model will lead easily
to the natural logarithm. Namely, assume that the velocity of P is proportional to
OP while that of Q is constant. Assume too, that at t =0, OP =1 and Q = 0.
The underlying differential equation has the natural logarithm as its solution. The
reader may assign this as an exercise to a class in calculus.

§5. PROPERTIES OF LN(X). Napier begins by doing some geometry in order to
justify the claim that as P moves geometrically, Q0 moves arithmetically. We
interpret his reasoning as follows.

Let P,, P,, P; be points on TS in geometric progression i.e.

PIS:P2S=P2S:P3S (1)
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Figure 2

Let the corresponding points on OL be Q;, 0,, Q.
Let a be an arbitrary point in P, P, and b the corresponding point in P, P;, that
is

aP,: aP, = bP,: bP, (2)
Let v, be the velocity of the point P when it is at x (= PS). From (1) we get
P,P,: P,S = P,P,: P,S, 3)
that is,
P,S: P,S = P,P,: P,P; = A (say). (4)
On the other hand, from (2) we have
P,P,: aP, = P,P,: P,P, = \ (5)

By construction, and from (4) and (5)
v, U, =aS: bS =P,S —aP;: P,S — bP,
= AP,S — AbP,: P,S — bP, = A.
Since P,P,: P,P; = A, it is very plausible to assume, and indeed Napier does
assume, that the point a traverses the segment P,P, in the same time that b
traverses P, P;.

Since the velocity on OL is constant, and we have shown that the times to
traverse P, P, and P, P, are the same, it follows that

00, - 0Q, = 0Q3 - 0Q,.

This conclusion forms the basis for Napier’s further developments. The reader
will note that Napier has, in effect, integrated the underlying differential equation.

We use the above analysis to derive properties of LN(x), properties essential in
the construction of the table of logarithms.

Theorem 5.1. If x,x, = x,x5, then
LN(xy) + LN(x,) = LN(x,) + LN(x5) (6)

Proof: Referring to figure 2, let
PSS =xq, P,S =x,, P3S =x; with x;: x, =x,: x5,
and let 0Q, =y;, 0Q, =y,, 005 = y;, then
y; = LN(x,) (i=1,2,3),
and since y, —y; = y3 — y,, we get
LN(x;) — LN(x;) = LN(x3) — LN(x,). (7)
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Now choose x, so that
le X3 = x3: x4,
then x: x, = x5! x, and
LN(x;) = LN(x,) = LN(x,) — LN(x5). (8)

Combining (7) and (8) we get the result. Dropping the subscripts, we have that if
ab = cd, then LN(a) + LN(b) = LN(c) + LN(d).

Although LN(x) does not satisfy the additive condition, it does however, satisfy
the following modified property:

Theorem 5.2. If TS is denoted by w, then
LN(wab) = LN(wa) + LN(wb)

Proof: Using theorem 1, we have
LN(wab) + LN(1) = LN(wa) + LN(b)
and
LN(wb) + LN(1) = LN(w) + LN(b)
Since LN(w) = 0 the result follows.
Cor.
LN(wc™) = nLN(wc)
forn=20,1,2,....
The proof is a straightforward induction.

The next step in the construction is to find bounds for LN(x). These bounds are
absolutely crucial to the calculation of the table of logarithms.

Theorem 5.3. We have the following inequalities:
Y 1) LN ( Y 1 9
o= (0 <w(7-1) ©)

Proof: Referring to fig. 3, if P and Q are corresponding points, then because P is
slowing down from its initial velocity v, at T, and Q is moving with constant
velocity v, it follows that OQ > TP. Hence

y=LN(x)>TP=TS —PS=w —x.

On the other hand imagine that the point P goes to P’, a point to the left of 7 and
let Q' be the corresponding point on OL, then the velocity at P’ is greater than
vy, and hence

P’ T
[ ) [ I: X ‘.s
Ql
. 9 y ?
-/ L
Figure 3
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oQ' < TP'.
But from the geometry, we know that if OQ" > OQ, then
TS: PS =TP': TP,
and hence
TP’ Y
=7 (w —x).
Consequently
w
LN(x) =00 =Q0<TP = ;(w -x)

as required.

Cor. Ifa < b, then
%(b—a) < LN(a) — LN(b) < %(b—a). (10)

Proof: Choose ¢ so that bc = aw, then
LN(b) + LN(c) = LN(a).
Now apply the theorem to ¢ = aw /b to get the stated conclusion.

The reader will note once again Napier’s remarkable insight since (10) gives the
inequalities which follow from the mean-value theorem for LN(x).

§6. THE CANON. The construction of the table takes place in four stages. The
first is the calculation of a number of reference points. The second is the
evaluation of the logarithms of these reference points. The third is the calculation
of logarithms of intermediate values and finally the fourth step is the determina-
tion of logarithms lying outside the table.

Step 1. The reference points. These are the points
w(l —c¢)"
To understand the choice of these points, it suffices to take short time intervals
and assume that the velocity of P in fig. 1 is constant in that interval. If O, is the
position of the point Q which is » units from 0, and P, the corresponding position
of P, then it is readily seen that an approximation to P, is given by w(l — ¢)".
Thus while LN(P,) = n, we stress emphatically that LN(w(1 — ¢)") # n. The
assertion that LN(w(1 — ¢)®) = n is one of the most flagrant errors made by
commentators.
We have already observed that the calculation of the values

A, =w(l—107%)"

for a fixed k is arithmetically comparatively simple and this fact reinforces
Napier’s decision to choose these points.

We have seen that in order for w(1 — ¢)" to be approximately w /2, n must be
about 7,000,000 (with ¢ = 10~7). This is an overwhelming amount of calculation.
Since, as we now know,

LN'(x) = ==, M

and in the range 1/2 <x <1, LN'(x) varies from =w to —2w, Napier feels
justified in taking larger “bites” in getting to w/2. This tactic, explained below,
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enables him to get to w/2 in 1600 steps and, as it turns out, retain seven decimal
places of accuracy for these reference points.
Here then are the steps taken by Napier. He calculates 3 tables as follows.

Table I. Calculate a, = w(l — ¢)" for n = 0,1,2,...,100. The last entry in this
table is w(1 — 10~7)'% and this is approximately w(1 — 10~°). The reader should
recall that if g, has been calculated then a,,, = a, — 10™"a,,. The second term is
merely a shift of decimal. The same remark applies to the remaining tables.

Table II. Calculate b, = w(1 — 1/10°)"(n = 0,...,50). The last entry in this table
is approximately w(1 — 1,/2000).

Despite the simplicity of calculating the values b,, Napier makes an arithmetic
error which affects the accuracy of subsequent calculations. We shall not dwell on
this point since it has no bearing on the validity of his method.

Table III. This is a double array

1 m—1 1 n—1
=wl1 - — 1— —
Cm.n W( 2000 ) ( 100 )

forl<sm<21,1<n<69.

The array has 69 columns and 20 rows. The first column begins at approximately
the point where Table II ended and since (1 — 1,/2000)%° is approximately
(1 — 1/100), the last entry of any column is approximately the second entry of the
next column.

The last entry in the last column is

1 20 1 68
11— —| [1- =
w( 2000) ( 100) ’

1 69
—wl1 - —
“ w( 100)

and this is about

or about w/2.
The computation of the reference points of Tables I, IT and III involves 1600
calculations, a far cry from 7,000,000.

Step 2. The Radical Table.

Having calculated the reference points, Napier now proceeds to construct what
he calls the Radical Table, that is to say the logarithms of all the reference points
of table III. He does this in a systematic way with the help of tables I and II.

First we calculate the logarithms of entries of tables I and II. Let us begin with
table I. Using the inequalities of theorem 3, we find

1 <LN(w(1 - c)) < 1.0000001,
Napier takes the value to be the arithmetic mean i.e.
LN(w(1 - c)) = 1.00000005 (2)

which is accurate to 14 decimal places.
If we systematically calculate w(l — ¢)* (k < 100) recursively we find
w(l — ¢)'% = 9999900.0004950.
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Using the Corollary of Theorem 5.2, we get LN(w(1 — ¢)*) = kLN(w(1 — ¢))
and in particular
LN(w(1 - ¢)'®) = 100.000005 (3)

We have lost 2 decimal places in the process. Thus we have all the values of
Napier’s logarithms for the points in table I.
Now we calculate the logarithm of the second entry of table II viz
b =w(1—107%) = 9999900.
This is based on the fact that b is approximately equal to

a = w(1 —¢)'"” = 9999900.0004950, whose logarithm we determined in (3).

Writing
LN(b) = LN(a) + (LN(b) — LN(a)),
Napier estimates LN(b) — LN(a) using the inequalities of Theorem 5.3. To 10
decimal places, we find
LN(b) — LN(a) = .0004950,
and therefore we evaluate
LN(b) = 100.0005.
The logarithms of all entries in table 2 are now obtained using the Corollary of

Theorem 5.2, i.e. LN(w(1 — 107°)%) = kLN(w(1 — 1077)).
We pass to Table III. The last entry of Table II is

y = w(1 = 107%)* = 9995001.224804023027881. (4)
The second entry of Table III (the first is 1) is

1

=w|l — ——| = 9995000 5
* W( 2000 ) )

which is approximately w(1 — 1075)%.

To find its log, we could proceed as above, but this would result in a significant

loss of accuracy. So Napier introduces a subtle idea which we describe. Because
LN(x) = —w/x,

the accuracy of the inequalities of Theorem 5.3 is much greater the closer x is to
w. Napier uses this observation (which he has evidently discerned) as follows:

Assuming LN(y) is known find the value of LN(x). First choose z satisfying
w y
-2 (6)

z  x
It is easily seen that z lies in the range of table 1. Since from (3)
LN(z) = LN(x) — LN(y),
writing
LN(x) = LN(y) + LN(z),
reduces the computation to LN(z). Let us call this the “method of transfer”. To

illustrate, let us show how to calculate LN(x) of equation (5) given LN(y) of
equation (4). From (6), we have,

z = 9999998.77458344.
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The value in Table I which is closest to z is a = 9999999 whose logarithm we
found to be LN(a) = 1.00000005. Using the inequalities of Theorem 5.3 applied to
a and z, we find

LN(x) = 5001.2504168229,

accurate to an astonishing 10 places of decimals.

Thus using the Corollary of Theorem 5.2, the logs of column 1 of Table III are
immediately evaluated. We use the method of transfer on the last entry of column
i to the second entry of column i + 1. The remaining logs are evaluated using the
corollary of Theorem 5.2. These logarithms are accurate to 7 places of decimals.

Step 3. This step consists of interpolating at intervals of 1. This is done using the
inequalities of Theorem 5.3. In addition there is a labor saving device using the
identity

w

LN
5

) + LN(wsin26) = LN(wsin ) +LN(wsin(—72£ - 0)),

which enables us to read off the values for 30° < 6 < 45° from those already
calculated.
In §7, we shall comment further on the accuracy of all the entries.

Step 4. The Short Table.
The final step is to find logarithms of numbers not in the range [w/2,w]. To do
this Napier constructs what he calls the “short table”. It consists of the values

I(A) = —LN(Aa) + LN(a)
for
A=27x%x107 0<p=<3, 0<gxT.

I(A4) does not depend upon a as is easily seen.
Suppose for example that 0 < a <w/2.
Choose m so that

g— <2"a <w.
Then 2™a lies in the range of the radical table, and
LN(a) = LN(2™a) — LN(2™a) + LN(a)
= LN(2™Ma) + I(2™).

Thus knowing I(2™) permits us to evaluate LN(a).
To find I(A4), we begin with

w
wa = E(2a).
Then by Theorem 5.1,
w
LN(a) = LN(2a) + LN(—Z—)

(recall that LN(w) = 0).
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From the radical table however, we find
w
LN ( 3 ) = 6931469.22.

This gives 1(2). By induction we get 1(2%). From the relation 2%aw = (8w /10)104,
we find LN(a) — LN(10a) = I(10) = 23,025,814, and by induction I(10%), and
finally I(A4).

A reader who has worked recently with logarithms, will not fail to recognize that

6,931,469 = 10" In2

while

23,025,814 = 107 In 10.

Finally therefore, all information is available to calculate LN(a) for any value
of a.

Let us finally try to summarize Napier’s method. Using a model based on
mechanics, Napier defines a function from A4 = [0,w] (w = 107), to R. Identities
satisfied by LN(x) are proved and in effect the Mean Value Theorem for LN(x) is
used to derive inequalities satisfied by LN(x). These are logarithmic-like proper-
ties.

To evaluate LN(x) a subset § € B = [w/2,w] consisting of about 1600 refer-
ence points is chosen. This subset is not random but is generated by powers of a
number ¢ < 1 so that control over the set is maintained. Using properties of
LN(x), the values LN(x) for x € S are calculated. Using a subtle interpolation
scheme, LN(x) for x € B is calculated at intervals of 1'. Finally a table is given to
facilitate the calculation of values of x which lie outside of B.

§7. BRIEF ERROR ANALYSIS. How accurate are Napier’s logarithms? It is more
pertinent to ask how accurate his method is for, as we have observed, he made an
error in table II which affected subsequent calculations.

We begin by estimating the error of the value of LN(x) assumed by Napier.
Recall that LN(x) is a decreasing function. Consider two values b > a > 0. To
calculate LN(b) given LN(a), we write

LN(b) = LN(a) — D,
where
D = LN(a) — LN(b).
From Napier’s inequalities of Theorem 5.2, we have

w w
F(b_a) <D<;(b—-a).

Napier takes the mean of the bounds

P L

(In fact he often divides not by a or b but by some intermediate values to render
the arithmetic easier.)

362 WHAT IS A NAPIERIAN LOGARITHM? [April

This content downloaded from
138.202.129.187 on Mon, 18 Mar 2024 22:25:08 +00:00
All use subject to https://about.jstor.org/terms



On the other hand, using Taylor’s theorem we find that the difference is

b—a)(1 1
A—D=E=¥(;+;)——(b—a)
+w(b—a)2 _w(b-a) .\

2a? 343
A little calculation shows that

w(b—a)’  w(b- a)4 1 1 (b —a)’w
6a’ * a’ (E_E)-FO( )’

from which we may verify that the value
LN(9,999,999) = 1.00000005

is indeed accurate to 14 places of decimals. A simple further analysis confirms that
the reference points are accurate to 7 places of decimals.
For the interpolated values, the error E is bounded by

|E| < 107%.

Thus the interpolated values are accurate to 4 places of decimals. However in
the neighborhood of a = 107sin# with @ close to 90°, the accuracy is far
better—we saw that above.

We could improve the accuracy by the method of transfer which entails
considerably more labor. Napier, however, is content to settle for the accuracy he
has achieved.

In fact, if we use the method of transfer to calculate LN(5,000,000), we find

w
LN( E) = LN(5,000,000) = LN(107sin30°) = 6931471.8055994

accurate to 7 decimal places. Note that w /2 is not one of the reference points.
The relative error of Napier’s method is 10~ 1°.

§8. CONCLUDING REMARKS. Not surprisingly, the canon was greeted with
great enthusiasm especially by Kepler who had been laboriously making calcula-
tions in connection with his laws.

It has the drawback we mentioned that LN(1) # 0. This drawback is an
impediment to the ease of calculations but not a serious one. This weakness was
recognized by Napier and during a visit by John Briggs to Napier, they discussed
the possibility of constructing a table in which log1 = 0. This was subsequently
completed by Briggs since Napier died soon after the visit.

The first table of hyperbolic logarithms, i.e. to base e, was first published by
John Speidell in 1619. It was derived directly from Napier’s table.

The odyssey of log tables is an interesting one but we shall not add any further
details here.

While it is true that Napier’s table was quickly overshadowed by others which
were easier to use, it is well to bear in mind that it was Napier who, alone, led the
way for others to follow. John Briggs’ praise of Napier is one witness to this fact.

Finally, however, we cannot resist the temptation of quoting Napier’s advice on
forming a logarithmic table.

“Prepare forty-five pages, somewhat long in shape, so that besides the margins
at the top and bottom, they may hold sixty lines of figures. Then divide each
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page ... . Next write on the first page at the top, to the left, over the first three
columns, ‘0 degrees’; and at the bottom...”.

Alas such charm has virtually vanished from the pages of our journals.

BIBLIOGRAPHY. The entire essay is based on “The Construction of the Wonder-

ful Canon of logarithms and their relations to their own natural numbers.”

I have used the translation of William Rae MacDonald first published in 1889
and reprinted in 1966 for Dawson’s of Pall Mall, London. The translation also
contains a catalogue of Napier’s works.

Since writing this article the author has found a reference to a lecture written by
E. W. Hobson entitled “John Napier and the invention of logarithms, 1614.
Cambridge Univ. Press 1914. It is to be highly recommended.

Department of Mathematics
Pennsylvania State University
University Park, PA 165802
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The Mathematical Association of
America wishes again to call the atten-
tion of all its members to the working
arrangement between the Association
and the Annals of Mathematics by
which, in return for a certain subsidy
contribution from the Association, the
Annals has extended the size of its
volume to include approximately one
hundred pages of expositional articles
and at the same time has made the
special subscription rate to individual
members of the Association of one
half the regular price. A goodly num-
ber of Association members have al-
ready taken advantage of this reduced
rate, but it is felt that a much larger
number would probably do so if their
attention were sufficiently arrested.

—American Mathematical Monthly
32, (1925) pp. 324
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