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 What Is a Napierian Logarithm?

 Raymond Ayoub

 ?1. INTRODUCTION. The invention of logarithms in 1614 by John Napier, baron
 of Merchiston in Scotland, is one of those rare parthogenic events in the history of
 science-there seemed to be no visible developments which foreshadowed its
 creation. The subsequent progress completely revolutionized arithmetic calcula-
 tions in various areas of science, especially in astronomy. It is startling to realize
 that the spectacular, if not miraculous, development of computers in the last two
 decades has rendered tables of logarithms, and the portable version-the slide
 rule-essentially obsolete.

 This was not always so. A generation ago, the use of tables of logarithms was an
 integral part of secondary education. A student had to learn the meaning of the
 terms logarithm, base, antilogarithm, mantissa, and interpolation and had to learn
 to use the tables. Moreover, the tables were either to base 10, earlier called
 "Briggsian" or to base e earlier called "hyperbolic" and before that "Napierian".
 The logarithms invented by Napier were closely allied to, but not the same as,
 hyperbolic.

 Over the years, various authors have vied with one another to produce tables of
 greater precision as well as ease of use. Indeed as recently as 1964, a table of logs
 to 110 decimal places was published under the auspices of the Royal Society.

 The purpose of this essay is to explain Napier's discovery and in the process
 answer the question of the title. The writer is motivated in part by the fact that
 historical accounts are either sketchy or inaccurate or both. We shall refer to some

 of these at the appropriate place in the narrat-ive. Napier's ideas are, as we shall
 see, quite subtle and many writers have failed to appreciate their brilliance and
 depth.

 Napier was born at Merchiston near Edinburgh in 1550 and died in 1617. It is
 worth noting that Descartes lived from 1596 to 1650 while Newton lived from 1642
 to 1727, the Principia having been published in 1687. Thus the mathematical tools
 available to Napier were decidedly limited. We should stipulate that the laws of
 exponents were, by then, well understood. Napier's ideas exhibited a remarkably
 clear conception of the logarithmic function, the term "logarithm" having been
 coined by Napier himself. This was at a time when the concept of function was
 only vaguely understood by the scientific community of his day.

 Moreover, he perfected the notation for the decimal representation of numbers,
 his notation being essentially that in use today. The decimal representation of
 numbers had been earlier described by S. Stevin, who built upon earlier work, and
 whose notation was not as elegant as Napier's.

 Two books were published on logarithms. The first in 1614 was titled "MIRIFICI
 LOGARITHMORUM CANONIS DESCRIPTIO" which has been translated as
 "Description of the wonderful canon of logarithms." This contains a table of
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 logarithms together with rules for the solution of triangles, both plane and
 spherical, with the use of the "canon."

 The second was published posthumously in 1619 and was titled "MIRIFICI
 LOGARITHMORUM CANNONIS CONSTRUCTIO" or "Construction of the
 wonderful canon of logarithms." It is in this work that he gives an account of the
 method by which the table was constructed as well as the properties of his

 logarithmic function, properties essential to the construction. It is this account that
 we propose to analyse and upon which we shall elaborate.

 Before proceeding, we should add parenthetically that Napier was well-known
 and highly esteemed in theological circles for his analysis and interpretation of the
 Book of the Revelation of St. John the Divine!

 ?2. THE PROBLEM. The end of the 16th and beginning of the 17th century was a

 period of profound astronomical research with such celebrated scholars as

 J. Kepler (1571-1630), Tycho Brahe (1546-1601), Galileo Galilei (1564-1642). The
 need for carrying out elaborate calculations involving trigonometric functions was
 very pressing. It was therefore urgent that some procedure be sought to shorten
 the labor required to perform these calculations. One such aid was the use of the
 identity 2 sin A sin B = cos(A - B) - cos(A + B) which was given the tongue-
 twisting name of prosthaphaeresis. There is some evidence that the method was
 used by Brahe and his assistant Wittich to whom the method is sometimes
 attributed. Another was the use of identity 4 AB = (A + B)2 - (A - B)2, which
 is sometimes referred to as the method of "quarter squares".

 Clearly these were inadequate. Ideally, what was needed was a function from
 (R*,) to (R, +) which converted multiplication to addition, in other words, a
 logarithmic function.

 With the laws of exponents in mind, the most obvious approach to defining such
 a function is to begin with a fixed real number c (which, in what follows, we take to

 be < 1), calculate bn = c" (n = 1 2 * * * ) and call n the logarithm of b,. More-
 over we need only calculate cn for n = 1, 2,. . ., k where k is that value which
 makes ck about 1/2. For if b = cm > 1/2, we find 1 so that a = b/21 with
 a ? 1/2 and then log b is determined by log a and log 1/2.

 Reasonable though this approach may be, it is subject to difficulties which are
 not easily overcome and which we now describe. Moreover, we begin by imposing
 reasonable restrictions.

 (i) The value of c should be chosen so that the calculation of cn(n E N) is
 arithmetically simple.

 (ii) The value of cn should not decay too rapidly i.e. the values cn and cn+'
 should be relatively close to one another.

 (iii) Given two values cr and cS, if a is such that, Cr < a < c, we require a
 method for finding a such that a = ca. The method should be accurate
 and easy to use.

 (iv) The labor of carrying out the needed computations should be within
 manageable bounds.

 Napier defines a mapping, which we describe in detail below, and is thereby led
 to choose c = 1 - A with A = 10- and oa e Ni. Let us stress at once that these
 powers are reference points and are the basis upon which the canon is constructed.
 As we shall see, the choice of o- determines the degree of accuracy of the final
 product.
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 If we write am = -'(1 -A)m (m E NJ), then am conforms to requirements (i)
 and (ii) for am = am - Aam1. Since am 1A is merely a shift of decimal, the
 value of am is easily obtained from am_1 by a simple subtraction. The arithmetic
 could hardly be simpler. Moreover, with a proper choice of a, am can be made to
 decay as slowly as we please.

 Let bn = cn, and suppose we take log bn = n. If then a is such that cn+l < a <
 cn, and we find log a by linear interpolation, the error E satisfies

 1 -
 IE - 10-5 and is relatively sharp.

 Suppose Ck is about 1/2 with c = A(1 - 10-5), then k is about 7 X 10'. If
 therefore we aim for 7 figures of accuracy, we must choose a. = 7 thus necessitat-
 ing initially 7,000,000 calculations. This is an overpowering amount of labor. In

 addition, we have the labor of interpolation.
 We state at once that this is not the method adopted by Napier.
 It seems to this writer virtually certain that as Napier embarked on his project,

 he soon perceived the shortcomings of such a comparatively straightforward

 approach. He therefore sought and discovered an alternate route, deeper, more
 effective and ultimately successful. There is evidence that Napier started to think
 about the problem around 1594 but there is no record of any of his false starts. We
 should remark that a Swiss contemporary named JOST BURGI used this straight-
 forward approach and published a table in 1620 well after Napier's work had been
 recognized and widely appreciated. Burgi's table proved to be of very limited use.

 ?3. PRELIMINARY REMARKS. Napier's motivation was the simplification of
 calculations related to the solutions of triangles, especially spherical triangles
 which were crucial in astronomy. In Napier's day and indeed for some time
 thereafter, the sine of an angle was not viewed as a ratio. It was taken to be the leg
 of a right triangle. More specifically, suppose we have a circle of radius r and an
 angle 0.

 A

 r

 B

 Then sine of 0 was taken to be AB. The fact that the sine changed with the radius
 was not a serious impediment.

 Napier sets out to construct a table which consists of the logarithms of sin 0. In
 this table Napier chooses r = 107 and his table consists of logarithm 107 sin 0
 (300 ? 0 ? 900) and at increments of 1'. Thus, although he has in mind applica-
 tions to trigonometry, the table is in reality a table of logarithms ranging from 107
 to 107/2 with increments which are not arithmetic but "geometric". Finally we
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 note that although the words "cosine" and "tangent" had not yet come into use,
 his table includes logs of cosines and tangents.

 Moreover, let us stress that we have used the word "logarithm" generically.

 Napier's logarithms, which we shall denote below by LN(x), have somewhat
 different properties from the standard function log x, which as we know, defines
 an isomorphism of (R * ) and (R, +). These differences are not significant but
 have led to misinterpretations by some historians. Even the redoubtable French
 general has implied mistakenly, that Napier's function was an isomorphism from
 (R*, ) to (R, +). This assumption is also inherent in other authors' assertion that
 Napier chose the base e or the base 1/e. Though not an isomorphism, the
 fundamental idea, however, of accurately converting multiplication to addition is
 essentially preserved.

 ?4. THE CONSTRUCTION. To determine a correspondence between a set in
 "igeometric progression" and one in "arithmetic progression", that is, an exponen-
 tial mapping which is the key element in defining a logarithmic function, Napier
 ingeniously resorts to a model from mechanics. It is based on the simple idea that
 the displacement of a point which moves with constant velocity is "arithmetic"
 while the displacement of a point which moves with a velocity proportional to the
 displacement is "geometric". The correspondence between two such points defines
 the required mapping. Here is Napier's model. Let TS be a segment of fixed
 length

 w= 107.

 The choice of the fixed length TS is motivated by the fact that Napier was
 interested in logarithms of sin 0 and is not a whimsical one! Given his objective,
 the choice was perfectly reasonable, the value for w being dictated by the degree
 of precision desired.

 T P S T p p

 Q L

 Figure 1

 Let OL be another line extending to infinity. At t = 0, let the points start at T
 and 0 respectively. The point Q moves on OL with constant velocity v0. The
 point P moves on TS in such a way that its velocity is proportional to the distance
 PS and we assume its velocity at T to be v0. The velocity of P therefore, de'creases
 from v0 at T to 0 at S.

 If at a time t, the point P is at a distance x from S, i.e. PS = x and Q at a
 distance y from 0, i.e. OQ = y, then Napier defines

 y = logarithm of x.

 We shall write

 y = LN(x) (1)

 to distinguish this function from the standard logarithm. We shall shortly establish

 the connection between the two.
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 Evidently

 LN(w) = 0, (2)

 since when P is at T, we have PS = w while OQ = 0.
 Before proceeding to the table of logarithms, let us use mathematics not then

 available to Napier to see exactly what his function LN(x) is.

 We have by Napier's conditions,

 dx= _-kx
 dt

 and at t = 0, x = w and dx/dt = vo. Hence k = v0/w.
 Since

 dy
 d = vo, we get

 dy w
 = -- or y=-wlnx+c

 dx

 But when t = 0, x = w and y = 0, hence c = w ln w or finally

 LN(x) = w(lnw - lnx)

 w w

 = ln()

 Many writers correctly state this fact about Napier's logarithms but it is not very
 illuminating except to verify that his logarithmic function is not an isomorphism. It
 is moreover, disingenuous to imply that he clumsily used a complicated function
 when he could have used a simple one! From (6) we have

 LN(ab) = LN(a) + LN(b) -w lnw;

 hence

 LN(ab) * LN(a) + LN(b).

 A simple transformation however, gives LN(x) a more familiar form. Let y = y/w,

 x = x/w, then, from (6)

 y = -InX= log,/,X.

 This fact has led many writers to state erroneously, that Napier chose e or l/e as
 the base of his logarithms. Napier's function is not an isomorphism, though, as we
 have remarked above, closely related.

 It is interesting to observe that a modification of Napier's model will lead easily
 to the natural logarithm. Namely, assume that the velocity of P is proportional to
 OP while that of Q is constant. Assume too, that at t = 0, OP = 1 and Q = 0.
 The underlying differential equation has the natural logarithm as its solution. The
 reader may assign this as an exercise to a class in calculus.

 ?5. PROPERTIES OF LN(X). Napier begins by doing some geometry in order to
 justify the claim that as P moves geometrically, Q moves arithmetically. We
 interpret his reasoning as follows.

 Let P1, P2, P3 be points on TS in geometric progression i.e.

 P1S: P2S = P2S: P3S (1)
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 T P1 P2 P3 S
 e p * p p i

 a b

 Q, Q2 Q3 L

 Figure 2

 Let the corresponding points on OL be Q1, Q2, Q3.
 Let a be an arbitrary point in P1P2 and b the corresponding point in P2P3, that

 is

 aPj: aP2= bP2: bP3 (2)

 Let vX be the velocity of the point P when it is at x (= PS). From (1) we get

 P1P2: P1S = P2P3: P2S, (3)

 that is,

 P1S: P2S = P1P2: P2P3 = A (say). (4)

 On the other hand, from (2) we have

 P1P2: aPl = P1P2: P2P3 = A (5)

 By construction, and from (4) and (5)

 Va: Vb = aS: bS = P1S - aPl: P2S - bP2

 = AP2S - AbP2: P2S - bP2 = A.

 Since P1P2: P2P3 = A, it is very plausible to assume, and indeed Napier does
 assume, that the point a traverses the segment P1P2 in the same time that b
 traverses P2P3.

 Since the velocity on OL is constant, and we have shown that the times to
 traverse P1P2 and P2P3 are the same, it follows that

 0Q2- 0Q1 = 0Q3 - 0Q2.

 This conclusion forms the basis for Napier's further developments. The reader
 will note that Napier has, in effect, integrated the underlying differential equation.

 We use the above analysis to derive properties of LN(x), properties essential in
 the construction of the table of logarithms.

 Theorem 5.1. If X1X4 = X2X3, then

 LN(xl) + LN(x4) =LN(x2) + LN(x3) (6)

 Proof: Referring to figure 2, let

 P1S = xl, P2S = x2, P3S = x3 with x1: X2 = X2: x3,

 and let 0Q1 = Y1, 0Q2 = Y2 0Q3 = Y3, then

 Yi = LN(xi) (i = 1, 2,3),

 and since Y2 - = Y3- Y2, we get

 LN(x2) -LN(xl) = LN(x3) -LN(x2). (7)
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 Now choose X4 so that

 X2: X3 = X3: X4,

 then xl: X2 X3: X4 and

 LN(x3) - LN(x2) = LN(X4) - LN(X3) (8)

 Combining (7) and (8) we get the result. Dropping the subscripts, we have that if
 ab = cd, then LN(a) + LN(b) = LN(c) + LN(d).

 Although LN(x) does not satisfy the additive condition, it does however, satisfy
 the following modified property:

 Theorem 5.2. If TS is denoted by w, then

 LN(wab) = LN(wa) + LN(wb)

 Proof. Using theorem 1, we have

 LN(wab) + LN(1) = LN(wa) + LN(b)
 and

 LN(wb) + LN(1) = LN(w) + LN(b)

 Since LN(w) = 0 the result follows.

 Cor.

 LN(wCn) = nLN(wc)

 for n =0,1,2....

 The proof is a straightforward induction.
 The next step in the construction is to find bounds for LN(x). These bounds are

 absolutely crucial to the calculation of the table of logarithms.

 Theorem 5.3. We have the following inequalities:

 w w

 x - - 1 < LN(x) <w - -1J (9)

 Proof: Referring to fig. 3, if P and Q are corresponding points, then because P is

 slowing down from its initial velocity vo at T, and Q is moving with constant
 velocity vo, it follows that OQ > TP. Hence

 y = LN(x) > TP = TS-PS = w-x.

 On the other hand imagine that the point P goes to P', a point to the left of T and
 let Q' be the corresponding point on OL, then the velocity at P' is greater than
 v0, and hence

 Pf T P S

 *Q<3 0 . Fl S EliliyQp
 L

 Figure 3
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 OQ' < TP'.

 But from the geometry, we know that if OQ' > OQ, then

 TS: PS = TP': TP,

 and hence
 w

 TP' = -(w -x).
 x

 Consequently

 w

 LN(x) = OQ = Q'O < TP' = -(w -x)
 x

 as required.

 Cor. If a < b, then

 w w

 - (b - a) < LN(a) - LN(b) < b - a). (10)

 Proof: Choose c so that bc = aw, then

 LN(b) + LN(c) = LN(a).

 Now apply the theorem to c = aw/b to get the stated conclusion.

 The reader will note once again Napier's remarkable insight since (10) gives the
 inequalities which follow from the mean-value theorem for LN(x).

 ?6. THE CANON. The construction of the table takes place in four stages. The
 first is the calculation of a number of reference points. The second is the
 evaluation of the logarithms of these reference points. The third is the calculation
 of logarithms of intermediate values and finally the fourth step is the determina-
 tion of logarithms lying outside the table.

 Step 1. The reference points. These are the points

 W(1 _ c)n

 To understand the choice of these points, it suffices to take short time intervals

 and assume that the velocity of P in fig. 1 is constant in that interval. If Qn is the
 position of the point Q which is n units from 0, and Pn the corresponding position
 of P, then it is readily seen that an approximation to Pn is given by w(1 - c)y.
 Thus while LN(Pn) = n, we stress emphatically that LN(w(l - c)n) # n. The
 assertion that LN(w(1 - c)n) = n is one of the most flagrant errors made by
 commentators.

 We have already observed that the calculation of the values

 A = w(1 - 10-k)
 for a fixed k is arithmetically comparatively simple and this fact reinforces
 Napier's decision to choose these points.

 We have seen that in order for w(1 - c)n to be approximately w/2, n must be
 about 7,000,000 (with c = 10- 7). This is an overwhelming amount of calculation.
 Since, as we now know,

 w

 LN'(x) = - (1)

 and in the range 1/2 < x < 1, LN'(x) varies from = w to -2w, Napier feels
 justified in taking larger "bites" in getting to w/2. This tactic, explained below,
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 enables him to get to w/2 in 1600 steps and, as it turns out, retain seven decimal
 places of accuracy for these reference points.

 Here then are the steps taken by Napier. He calculates 3 tables as follows.

 Table I. Calculate an = w(1 - c)n for n = 0,1, 2,...,100. The last entry in this
 table is w(1 - 10-7)100 and this is approximately w(1 - 10-5). The reader should

 recall that if an has been calculated then an+1 =an - 10-7an. The second term is
 merely a shift of decimal. The same remark applies to the remaining tables.

 Table II. Calculate bn = w(1j- 1/105)n(n = 0, . , 50). The last entry in this table
 is approximately w(1 - 1/2000).

 Despite the simplicity of calculating the values b, Napier makes an arithmetic

 error which affects the accuracy of subsequent calculations. We shall not dwell on

 this point since it has no bearing on the validity of his method.

 Table III. This is a double array

 / 1 Xm-1/ 1 Xn-1
 Cm, n = wl 200 J l lo

 for 1 < m < 21 1 < n < 69.
 The array has 69 columns and 20 rows. The first column begins at approximately

 the point where Table II ended and since (1 - 1/2000)20 is approximately
 (1 - 1/100), the last entry of any column is approximately the second entry of the
 next column.

 The last entry in the last column is

 we - 01 20) 1 )68

 and this is about

 1 69

 a = w 1 -
 100

 or about w/2.

 The computation of the reference points of Tables 1, 11 and III involves 1600
 calculations, a far cry from 7,000,000.

 Step 2. The Radical Table.
 Having calculated the reference points, Napier now proceeds to construct what

 he calls the Radical Table, that is to say the logarithms of all the reference points
 of table III. He does this in a systematic way with the help of tables I and II.

 First we calculate the logarithms of entries of tables I and II. Let us begin with
 table I. Using the inequalities of theorem 3, we find

 1 < LN(w(1 - c)) < 1.0000001,

 Napier takes the value to be the arithmetic mean i.e.

 LN(w(1 - c)) = 1.00000005 (2)

 which is accurate to 14 decimal places.
 If we systematically calculate w(1 - c)k (k ? 100) recursively we find

 w(1 - c)100 = 9999900.0004950.
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 Using the Corollary of Theorem 5.2, we get LN(w(l - c)k) = kLN(w(l - c))
 and in particular

 LN(w(l - c)100) = 100.000005 (3)
 We have lost 2 decimal places in the process. Thus we have all the values of

 Napier's logarithms for the points in table I.
 Now we calculate the logarithm of the second entry of table II viz

 b = w(l - i0-5) = 9999900.

 This is based on the fact that b is approximately equal to

 a = w(1 - c)'00 = 9999900.0004950, whose logarithm we determined in (3).

 Writing

 LN(b) = LN(a) + (LN(b) -LN(a)),

 Napier estimates LN(b) - LN(a) using the inequalities of Theorem 5.3. To 10
 decimal places, we find

 LN(b) - LN(a) = .0004950,

 and therefore we evaluate

 LN(b) = 100.0005.

 The logarithms of all entries in table 2 are now obtained using the Corollary of
 Theorem 5.2, i.e. LN(w(1 - 10-5)k) = kLN(w(j - 10-5)).

 We pass to Table III. The last entry of Table II is

 y = w(1 - 10-5)51 = 9995001.224804023027881. (4)
 The second entry of Table III (the first is 1) is

 x=w(1 2000 9995000 (5)

 which is approximately w(1 - 10-5)50.
 To find its log, we could proceed as above, but this would result in a significant

 loss of accuracy. So Napier introduces a subtle idea which we describe. Because

 LN(x)' =-wlx

 the accuracy of the inequalities of Theorem 5.3 is much greater the closer x is to
 w. Napier uses this observation (which he has evidently discerned) as follows:

 Assuming LN(y) is known find the value of LN(x). First choose z satisfying
 w Y y (6)

 z x

 It is easily seen that z lies in the range of table I. Since from (3)

 LN(z) = LN(x) -LN(y),

 writing

 LN(x) = LN(y) + LN(z),

 reduces the computation to LN(z). Let us call this the "method of transfer". To
 illustrate, let us show how to calculate LN(x) of equation (5) given LN(y) of
 equation (4). From (6), we have,

 z = 9999998.77458344.
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 The value in Table I which is closest to z is a 9999999 whose logarithm we
 found to be LN(a) = 1.00000005. Using the inequalities of Theorem 5.3 applied to
 a and z, we find

 LN(x) = 5001.2504168229,

 accurate to an astonishing 10 places of decimals.
 Thus using the Corollary of Theorem 5.2, the logs of column 1 of Table III are

 immediately evaluated. We use the method of transfer on the last entry of column
 i to the second entry of column i + 1. The remaining logs are evaluated using the
 corollary of Theorem 5.2. These logarithms are accurate to 7 places of decimals.

 Step 3. This step consists of interpolating at intervals of 1'. This is done using the
 inequalities of Theorem 5.3. In addition there is a labor saving device using the
 identity

 LN ) + LN(w sin 20) = LN(w sin 0) + LN(w sin - - 0

 which enables us to read off the values for 300 < 0 < 450 from those already
 calculated.

 In ?7, we shall comment further on the accuracy of all the entries.

 Step 4. The Short Table.
 The final step is to find logarithms of numbers not in the range [w/2, w]. To do

 this Napier constructs what he calls the "short table". It consists of the values

 I(A) = -LN(Aa) +LN(a)

 for

 A=2Px l 1 0 ?p ? 3, 0 < q < 7.

 I(A) does not depend upon a as is easily seen.
 Suppose for example that 0 < a < w/2.

 Choose m so that

 w

 - < 2ma < w.
 2 =

 Then 2ma lies in the range of the radical table, and

 LN(a) = LN(2ma) - LN(2ma) + LN(a)

 =LN(2ma) + I(2m).

 Thus knowing I(2m) permits us to evaluate LN(a).
 To find I(A), we begin with

 w

 wa - (2a).
 2

 Then by Theorem 5.1,

 w

 LN(a) = LN(2a) + LN 2

 (recall that LN(w) = 0).
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 From the radical table however, we find

 w

 LN(A2 ) = 6931469.22.

 This gives I(2). By induction we get I(2k). From the relation 23aw = (8w/10)10a,
 we find LN(a) - LN(lOa) = I(10) = 23,025,814, and by induction I(10k), and
 finally I(A).

 A reader who has worked recently with logarithms, will not fail to recognize that

 6,931,469 = 107 In 2

 while

 23,025,814 107 n 10.

 Finally therefore, all information is available to calculate LN(a) for any value
 of a.

 Let us finally try to summarize Napier's method. Using a model based on
 mechanics, Napier defines a function from A = [0, wI (w = 107), to R. Identities
 satisfied by LN(x) are proved and in effect the Mean Value Theorem for LN(x) is
 used to derive inequalities satisfied by LN(x). These are logarithmic-like proper-
 ties.

 To evaluate LN(x) a subset S c B = [w/2, w] consisting of about 1600 refer-
 ence points is chosen. This subset is not Tandom but is generated by powers of a
 number c < 1 so that control over the set is maintained. Using properties of
 LN(x), the values LN(x) for x E S are calculated. Using a subtle interpolation
 scheme, LN(x) for x E B is calculated at intervals of 1'. Finally a table is given to
 facilitate the calculation of values of x which lie outside of B.

 ?7. BRIEF ERROR ANALYSIS. How accurate are Napier's logarithms? It is more
 pertinent to ask how accurate his method is for, as we have observed, he made an
 error in table II which affected subsequent calculations.

 We begin by estimating the error of the value of LN(x) assumed by Napier.
 Recall that LN(x) is a decreasing function. Consider two values b > a > 0. To
 calculate LN(b) given LN(a), we write

 LN(b) = LN(a) - D

 where

 D = LN(a) - LN(b).

 From Napier's inequalities of Theorem 5.2, we have

 w w

 b (b - a) < D < -(b - a). b ~~~a

 Napier takes the mean of the bounds

 A = w/2(b - a) + -

 (In fact he often divides not by a or b but by some intermediate values to render
 the arithmetic easier.)
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 On the other hand, using Taylor's theorem we find that the difference is

 w(b - a) 1 1) w
 A - D = E = 2 _+ - - -(b - a)

 2 3

 w(b - a)2 w(b - a)3
 +
 2a2 3a3

 A little calculation shows that

 _W(b -a) + w(b -a )4(1 - 2b (b - a)5w)
 6a3 a' 4a 2b ) a4 )

 from which we may verify that the value

 LN(9,999,999) = 1.00000005

 is indeed accurate to 14 places of decimals. A simple further analysis confirms that
 the reference points are accurate to 7 places of decimals.

 For the interpolated values, the error E is bounded by

 JEl < 10-4.

 Thus the interpolated values are accurate to 4 places of decimals. However in
 the neighborhood of a = 107 sin 0 with 0 close to 900, the accuracy is far
 better-we saw that above.

 We could improve the accuracy by the method of transfer which entails
 considerably more labor. Napier, however, is content to settle for the accuracy he
 has achieved.

 In fact, if we use the method of transfer to calculate LN(5,000,000), we find

 w

 LN(r = LN(5,000,000) = LN(107 sin 30?) = 6931471.8055994

 accurate to 7 decimal places. Note that w/2 is not one of the reference points.
 The relative error of Napier's method is 10-10.

 ?8. CONCLUDING REMARKS. Not surprisingly, the canon was greeted with
 great enthusiasm especially by Kepler who had been laboriously making calcula-
 tions in connection with his laws.

 It has the drawback we mentioned that LN(1) # 0. This drawback is an
 impediment to the ease of calculations but not a serious one. This weakness was
 recognized by Napier and during a visit by John Briggs to Napier, they discussed
 the possibility of constructing a table in which log 1 = 0. This was subsequently
 completed by Briggs since Napier died soon after the visit.

 The first table of hyperbolic logarithms, i.e. to base e, was first published by
 John Speidell in 1619. It was derived directly from Napier's table.

 The odyssey of log tables is an interesting one but we shall not add any further
 details here.

 While it is true that Napier's table was quickly overshadowed by others which
 were easier to use, it is well to bear in mind that it was Napier who, alone, led the
 way for others to follow. John Briggs' praise of Napier is one witness to this fact.

 Finally, however, we cannot resist the temptation of quoting Napier's advice on
 forming a logarithmic table.

 "Prepare forty-five pages, somewhat long in shape, so that besides the margins
 at the top and bottom, they may hold sixty lines of figures. Then divide each
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 page... . Next write on the first page at the top, to the left, over the first three
 columns, '0 degrees'; and at the bottom...".

 Alas such charm has virtually vanished from the pages of our journals.

 BIBLIOGRAPHY. The entire essay is based on "The Construction of the Wonder-
 ful Canon of logarithms and their relations to their own natural numbers."

 I have used the translation of William Rae MacDonald first published in 1889
 and reprinted in 1966 for Dawson's of Pall Mall, London. The translation also
 contains a catalogue of Napier's works.

 Since writing this article the author has found a reference to a lecture written by
 E. W. Hobson entitled "John Napier and the invention of logarithms, 1614.
 Cambridge Univ. Press 1914. It is to be highly recommended.

 Department of Mathematics

 Pennsylvania State University
 University Park, PA 16802

 The Mathematical Association of
 America wishes again to call the atten-
 tion of all its members to the working
 arrangement between the Association
 and the Annals of Mathematics by
 which, in return for a certain subsidy
 contribution from the Association, the
 Annals has extended the size of its
 volume to include approximately one
 hundred pages of expositional articles
 and at the same time has made the
 special subscription rate to individual
 members of the Association of one
 half the regular price. A goodly num-
 ber of Association members have al-
 ready taken advantage of this reduced
 rate, but it is felt that a much larger
 number would probably do so if their
 attention were sufficiently arrested.

 -American Mathematical Monthly
 32, (1925) pp. 324
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