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LOGARITHMS

by Jack Oliver

Introduction

Some while ago, I gave a presentation on two or three
occasions to the ‘University of the Third Age’ with the title
‘History of Calculation’. At a point in the development, I
talked about Napier (1550-1617) and the invention of
logarithms. I also used a rather quickly made paper slide rule
(about three metres long) which proved very successful. A
question that was asked by more than one person was ‘How
were the logarithms of numbers calculated?’ I must admit
that I had only vague ideas of how the first tables of
logarithms were constructed and promised myself that I
would investigate further and possibly write a short paper on
my findings. Well, that was some time ago and my
investigations over this time led me from one mathematical
topic to another and from one reference to another (not
always giving consistent information).

Napier

I shall start with Napier and his time, backtrack to very early
times before I return to Napier to fill in some extra details.

John Napier was born in Merchiston Castle near
Edinburgh, Scotland in 1550. He was the Eighth Laird of
Merchiston and so was not without means. He was educated
at St Andrews University, Edinburgh. He then travelled
through Europe whilst still young before returning home to
Merchiston where he spent the rest of his life, dying in 1617.
From this we can see that during his earlier years he was
exposed to the learning of his day which served him well for
his investigations in later life.

Napier died 25 years before Newton was born and so
didn’t have the benefit of the tools of calculus. At this time,
working with fractional quantities was very cumbersome
and so mathematicians tried to work with whole numbers as
far as possible. Napier himself invented the ‘decimal point’
which was to be of help to him in constructing his
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logarithmic tables. It must be said that the time was ripe for
such an invention; in 1585 Simon Stevin had designed a
precursor of decimal notation.

Napier was a man with a curiosity. He designed
mechanical artefacts (that weren’t made), wrote early
Science Fiction and wrote religious tracts among other
things. The interests for which he is best remembered are
‘Napier’s Bones or Rods’ which were devices that made
multiplication and division easier and his making of a table
of logarithms. From this we can see that he was keenly
interested in ways that the arithmetical operations of
multiplication and division might be simplified.

Before Napier

At this time the scientific world was greatly interested in
observational astronomy of which there was a long tradition
going right back to the times of Ancient Egypt and the
peoples of Ancient Mesopotamia. An important tool of the
astronomer was a table of chords of a circle. Such a table
gives the lengths of the chords corresponding to the angles
subtended by those chords at the centre of the circle or the
corresponding half-chords and half-angles. The earliest
known table is on a Babylonian cuneiform tablet that dates
back to the earlier half of the second millennium BC and lists
the ‘secants’ of 15 angles between 45° and 30°.

From then until Napier’s time there was a continued
improvement of both the completeness and accuracy of such
tables. Of particular note is a table of Claudius Ptolemy’s (of
Almagest fame) (ca. 85-165) which lists central angles from 0°
to 180° in steps of 1/,° and their chord lengths. A table of
chords is attributed to Hipparchus who flourished about 250
years before Ptolemy and this may have been the inspiration
for the latter’s table. However, the table of Hipparchus has
been lost. Continued improvements by Arabic and
European mathematicians had by the time of Napier
produced tables to 10 significant figures for every 10" of arc.
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Chord Tables

Fig. 1 We can create tables of chords or half-chords
corresponding to the angles or half-angles that these
chords subtend at the centre of the circle

Table 1a

Angle POP’ Chord PP’
0 0
180 cc
or
Table 1b
Angle PON Half-chord NP
0 0
90 oC

These tables are very much like tables of sines, particularly
Table 1b. Originally the construction of such tables required
a great amount of work involving the geometry of angles.
Today we can construct such tables very easily using a
spreadsheet, for example. Of course, that involves a lot of
hidden mathematics; we are standing on the shoulders of
giants who did the donkey work for us. At this point, it
could be instructive to use a spreadsheet to construct the
following chord table (Table 2) perhaps at intervals of 1°:

Table 2

Angle PON Half-chord NP
90 107
0 107 sin(0)
0 0

We have taken the radius of the circle to be 107 as did
Napier, and we have constructed it so that we can combine it
with Napier’s logarithmic table.

Although this work was developed over a long period of
time, it represents a huge amount of work. What was it all
for?

It is not the purpose of this paper to look at how these
chord tables were constructed. Suffice it to say that they
were. What we wish to look at is how starting from these
tables, Napier constructed the very first logarithm tables.

As mentioned above this was a time of great work in
observational astronomy and contemporaries of Napier
included Tycho Brahe (1546-1601) in Denmark and
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Johannes Kepler (1571-1630) in Germany, among others.
Their investigations led to calculations with numbers from
the above-mentioned chord tables and any help that would
reduce the slog of the arithmetic involved would have been
greatly appreciated. Many of their calculations involved
multiplications and divisions which were particularly
tedious. It was Napier’s inspiration to extend this chord
table by adding extra columns which would reduce the
operations of multiplication and division in trigonometry to
addition and subtraction which are so much simpler to
perform.

Napier’s Work

First we shall define what Napier meant by a logarithm and
we shall do this by referring to a geometrical model as he
did. We shall use some modern notation rather than the
terms that he used.

Fig. 2

As in Figure 2, take a half-line with origin A’ and a line
segment AZ. Now think of two particles p', p starting at the
same time and moving to the right, the one at A’ moving
with constant speed and the other starting at A and moving
according to the following rule. When particle p’ has reached
P’ particle p has reached P such that the speed of p is
proportional to the distance remaining to Z and the initial
speed of p is the same as the initial speed of p’, then

y = naplog (x)

where x = PZ and y = A'P' and ‘naplog’ refers to the
logarithm of x as defined by Napier.

Notes:

1. This definition could have been simplified if Napier had
had access to Cartesian coordinates and the idea of
moving particles could have been avoided.

2. This is certainly not the definition of logarithms to base
e that we know today although these are sometimes
known as ‘naperian logarithms’ in honour of Napier but
perhaps are better called ‘natural logarithms’.

3. This is a continuous model and would not have been easy
to analyse without calculus.

At this point Napier immediately moved on to a discrete
model based on the above. Rather than thinking of particles
moving smoothly along the above lines, Napier
concentrated his attention on particular points on the two
lines as in Figure 3.

——+—+
B ¢ D E -~ Z

o N

} + } } f >
A B C¢C D F
Fig. 3
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On the second line A'; B, C', D', E', etc., are equally
spaced and are reached successively in equal ‘moments’ of
time. The corresponding positions on the first line are 4,
B, C, D, E, etc. (and the points are getting closer together).
It should be noted that Napier did not have access to
exponential notation and numbers such as 107 he would
write as 10000000 (without spaces). For reasons of
avoiding fractions and achieving the accuracy he
wanted, Napier chose the length AZ to be 107 units. This
also was an appropriate choice based on the chord tables
that were available. A'B’ and AB are essentially equal and
on the scale chosen are equal to 1. Now from the above
definition of ‘naplog’ and the above units of length, we can
write:

BZ =107-1
=107 (1-107) .. Q

AB _BC

AZ BZ

1 __BC

107 (107-1)

BZ =1-107

CZ=BZ-BC

CZ =107 (1 -107)? .. Q0
Similarly from

AB _CD

AZ CZ
we can obtain

DZ =107(1-107)3 .. 0 andsoon.

Hence we find the lengths AZ, BZ, CZ, ... are in
geometrical progression with a common ratio of (1 - 10-7)
corresponding to the lengths A'B’, B'C’, C'D’, ... which
are in arithmetic progression with a common difference of
1. Essentially we now have the tools for constructing a
logarithmic table where the numbers are represented by
the lengths AZ, BZ, CZ, ... and their ‘naplogs’ by the
lengths A'B’, B'C', C'D’, ... . Perhaps it would be more
accurate to say that we would be constructing an
antilogarithm table as the numbers are 107, 107 (1 — 10-7),
107 (1 — 10-7)2, 107 (1 - 10-7)3, ... and their corresponding
‘naplogs’ are 0, 1, 2, 3, ... .

Napier thought that if he could calculate sufficient
numbers from their ‘naplogs’ he could construct a table of
naplogarithms by interpolations and other techniques. But
how would he calculate such numbers as 107 (1 — 107)3?
There was a way to simplify the calculations rather than
successive multiplications by (1 — 10-7). Here is the
background mathematics. The difference between two
successive numbers is

107 (1 - 107y+1 — 107 (1 — 107y = — (1 — 107

and this is equal to the negative of 107 (1 — 107y divided by
107. So Napier could calculate a number from the previous
number by moving the decimal place in the previous
number seven places to the left and then subtracting the
result from the previous number.

Mathematics in School, November 2000

Here are the first few rows of such a table:

Table 3
Number Subtract Number Naplog
10 000 000 1.000 000 0 10 000 000 0
9 999 999 0.999 999 9 9 999 999 1
9 999 998.000 000 1 0.999 999 8 9 999 998 2
9 999 997.000 000 3 0.999 999 7 9999 997 3
9 999 996.000 000 6 0.999 999 6 9 999 996 4
9999 995.000 001 0 0.999 999 5 9 999 995 5
9999 994.000 001 5 0.999 999 4 9 999 994 6
9999 993.000 002 1 9999 993 7

Notes on Table 3:

1. In the first column, 10 000 000 is the length of the radius
from the chord table. Going down the table we get
lengths of successive half-chords.

2. The second column gives the number to be subtracted
from the number to the immediate left in the first
column to give the number to the lower left in the first
column. The fractional parts of the numbers in the first
column being dropped in calculating the second column
number.

3. The third column gives the integral part of the number
in the first column which would have been that which
Napier would have used.

4. The final column gives the naplog of the corresponding
number in the third column.

5. The difference between the numbers in the third column
from an AP would have been very little considering how
close the common ratio is to 1.

6. In modern terms, naplog(107sin(1')) = 81425711. You
might like to calculate this for yourself on a calculator
using Napier’s definition of a ‘naplog’. At a single step at
a time in constructing Table 3, this would represent a
hopeless task.

7. However, it is possible to proceed at 100 or even 1000
steps at a time. Let us look at the mathematics of this as
we did above for a single step. We will look at the
situation for 1000 steps.

107 (1 - 1077)n+1000 = 107 (1 — 107y = ...
= 107 (1 - 107)y*(— 104 + terms less than 10-8)
~ =104 {107 (1 - 107)»}

In words, Napier could calculate a number from the
number 1000 before it by moving the decimal place in
the previous number four places to the left and then
subtracting the result from the previous number.

8. The table can be extrapolated backwards for numbers
greater than 10 000 000 to give negative naplogs.
naplog(10000001) = -1, etc. to well within the accuracy
for which Napier was seeking.

9. Having obtained the naplogs of a number of numbers, he
could easily find the naplog of the product of any two of
these numbers. This would have been an important
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technique in extending the table. But see the example on
products below.

10. If we look at the decimal digits to the far right of the
numbers in the first column, we note that they form a
sequence of triangular numbers. Perhaps this might have
been used in finding numbers further down the column!

It is instructive at this point to construct a simplified
table of ‘naplogs’ with a spreadsheet. We will choose 103 as
the radius of our circle which leads to a common ratio of
(1-103).

Table 4
Number Naplog
103 0
103 (1-103) 1
103 (1-10-3)2 2
103 (1-10-3)100 100

The numbers in the first column of Table 4 can be
calculated by using the formula 103 (1 — 10-3)* wheren is the
value of the ‘naplog’ in the second column and it would be
appropriate to calculate it to three decimal places.
Alternatively, each successive number can be found by
subtracting one thousandth of its predecessor from itself as
described above.

Try ‘multiplying’ two numbers from the left column with
a calculator, add their ‘naplogs’ n; + n, from the second
column and check against the result of this in the second
column back into the first column. You will have to divide
your result by 103 to adjust to the ‘correct’ result.

N,N, = 103(1 - 10-3)m103 (1 - 1032
= 106(1 - 10-3)n1+nz
=103 P

You might investigate a similar procedure for division.

It is clumsy, but it works and the table is not all that
appealing. Napier spent more than 20 years to 1614
performing all the calculations and interpolations and
merging his results with a chord table. Be it noted that he
didn’t have the benefits of calculators or spreadsheets! The
results of all his labours were ‘Mirifici logarithmorum
canonis descriptio’ or, in English, ‘A Description of the
Wonderful Law of Logarithms’, a table of logarithms with
rules for their use.

From the preceding, we see that Napier’s main aim was to
make the operations of multiplication and division easier
when applied to trigonometric functions in a chord table. He
proceeded to construct a table, the outline of which is given
below:

Table 5

Arches Sines Naplog 3t column - Naplog Sines Arches

‘Arches’ (Ist and 7th columns) refers to half the angle
subtended by the chord at the centre of the circle and the
table contained entries for every successive minute of arc.
The sines (arches) columns (2nd and 6th) gave the half-
chord lengths corresponding to the angles of the 1st column.
The naplog (sines) columns (3rd and 5th) gave the naplogs
of the corresponding numbers in the 2nd and 6th columns.
The 4th column gave the result of subtracting the number in
the 5th column from that in the 3rd column to give the
naplog of the tangent of the corresponding angle in the 1st
or 7th column.

naplog{sin(8)} - naplog{sin(90 — 8)} = naplog{sin(6)/sin(90 — 6) }
= naplog{sin(8)/cos(8) }
= naplog{tan(e)}

If we put a negative sign before a number in the 3rd or Sth
columns, we obtain:

—naplog{sin(8)} = naplog{cosec (8)}
= naplog{sec(90 - 0)}

In words, the negative of a number in the 3rd or 5th
column gives the naplog of the secant of the angle in the 7th
or 1st column.

So from this table we can obtain the naplogs of the sines,
tangents and secants of angles and hence the sines, tangents
and secants from the 2nd and 6th columns.

Further Developments

Although there is much more that could be said about the
structure of Napier’s table, what has been said will be
sufficient for the purpose of this article.

The table was received with great enthusiasm when it was
first published and in particular proved a boon for the
astronomers of the time. Even 180 years later, Laplace gave
it an accolade by describing it ‘as doubling the life of the
astronomer’ because of all the time that was saved in
simplifying calculations.

In 1615 the year after the first publication of the tables,
Henry Briggs travelled to Scotland to pay his respects to
Napier and stayed there for a month before returning to
London. Briggs was then Professor of Geometry at Gresham
College in London. During this month, the two agreed that
there would be much benefit in reconstructing the table so
that the logarithm of 10 was 1 and the logarithm of 1 was 0.
Thus was born the idea of Common or Briggsian logarithms
which were to be used from the 1620’s to well into the late
1900’s when the electronic calculator superseded logarithms
for the purposes of calculation.

It must be said that the ‘time was ripe’ (the end of the
second decade of the 1600’s) for a leap forward to better
methods of making calculations. Briggs had produced a
table of 14-figure logarithms in 1624. In 1620 Edmund
Gunter who was a colleague of Briggs had produced a table
of common logarithms of sines and tangents. Also at this
time the first slide rules were made which depended for
their working on the theory of logarithms.

(arches) (sines) 5th col (sines) (arches) . . . .
The final part of this article will be devoted to the ideas
0 90 that Briggs used in constructing his table of common
logarithms. Here it would be well to note the differences
45 45 between Napier’s original table and the table that was finally
12 Mathematics in School, November 2000 The Mathematical Association website www.m-a.org.uk
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published by Briggs in 1624. Napier’s table was defined by a
fixed point (the naplog of 107 was 0) and a common ratio of
(1 — 107) as described above. Briggs’ table had two fixed
points corresponding to the numbers 1 and 10 whose
Briggsian logarithms were 0 and 1. With this choice, Briggs
ensured that his logarithms were ideally suited to the
purposes of calculation as is testified by their longevity of
use over many centuries. Briggs’ table was not complicated
with trigonometric considerations and so the whole concept
was much simpler than that of the table devised by Napier.

And now to some discussion of the ideas behind the table
constructed by Briggs.

The Calculation of Briggsian Logarithms

We shall attempt to illustrate the thinking behind the work
of Briggs by first of all finding the logarithm of a single
number to the base of 10 and then indicate how this could
have been used as the basis to calculate a whole table of
logarithms.

For our present purpose, we shall always regard log(x) as a
logarithm to the base of 10 where the logarithm is the power
to which 10 must be raised to give x.

We shall try to find the value of log(7). We emphasize that
the only arithmetical operations that were available to
Briggs were those of +, — , +, x, V, and a lot of time and
patience. The square root operation was particularly
important as you will see.

First, we shall construct the following table:

Table 6
Reciprocal of Power Power Number

2 0.5 3.16227766

4 0.25 1.77827941

8 0.125 1.333521432

16 0.0625 1.154781985

32 0.03125 1.074607828

64 0.015625 1.036632928

128 0.0078125 1.018151722

256 0.00390625 1.009035045

512 0.001953125 1.004507364

1024 0.000976563 1.002251148

2048 0.000488281 1.001124941

4096 0.000244141 1.000562313

Notes on Table 6:
1. The Ist column contains powers of 2.

2. The 2nd column contains the reciprocals of those powers
in decimal form. These values can be obtained by
division.

3. The numbers in the 3rd column are found by the process
of finding successive square roots of first 10 and then the
square root of that.

3.16227766 = V10, 1.778 27941 = W10, etc.

4. The values are worked out to 8 decimal places. Briggs
worked to many more.

5. Since 3.16227766 = 102 then log(3.16227766) = 1/2 = 0.5
and 1.33352143 = 10”8 then log(1.33352143) = 1/s = 0.125

Mathematics in School, November 2000
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Armed with the above information, we can continue with
our original problem of finding log(7).

If we put 7 = 10 then we can write 7 = 10"2x2.213594 36
where 2.213594 36 = 7/10"2 and 102 = 3.162 277 66 was
taken as the largest number in column 3 that is less than 7.

We now deal with 2.213 594 36 in the same way and find
that 2.21359436 = 10"4x 1.244 795 59.

Then 1.24479559 = 10'/16x 1.077 94857 and so on. We
carry this on until we have achieved the desired accuracy.
Back-substituting we find

7= 10Y2x 104 x 10116 x 10%/32 x 1011/1024 x 1(1/4096 x __.
when log(7) =12+ Ya + Yie + /32 + 11024 + /4096 +...
= 0.84497070

which is correct to about 0.015%.

Now we know how to find a logarithm. The above is
essentially the process that Briggs used to calculate
logarithms. Other tools that Briggs could have used were the
‘Laws of Logarithms’, in particular log(mn) = log(m) +
log(n) so that having calculated log(25) and log(7) he could
find log(175) as log(25) + log(7), log(7000) would be
log(1000 x 7) = 3 + log(7). Even then ten years of work was
needed until in 1624 he finally published his ‘Arithmetica
logarithmica’ being a 14-place table of common logarithms
of the numbers from 1 to 20000 and from 90000 to 100 000.
The gap from 20000 to 90000 was filled in during the next
few years.

And so here we have the story of the birth of logarithms.
The motivation behind the construction of the tables above
was an aid to calculating products and quotients. For Napier
it was as an aid to calculations in trigonometry and hence to
astronomy. It was a pity that Napier wasn’t able to divorce
the work of calculation from the trigonometry; he would
have saved himself much work and time.

Briggs saw a simpler solution but again was concerned
with easing the calculations involved in multiplication and
division. To both their credits, their work was used well into
the late 20th century when the electronic calculator took over.

The other face of logarithms is the background
mathematical theory together with the corresponding
theory of exponential functions. These provide powerful
tools for studies in the physical, biological and social
sciences. But that is a whole new story. &}
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