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 LOGARITHMS

 by Jack Oliver

 Introduction

 Some while ago, I gave a presentation on two or three
 occasions to the 'University of the Third Age' with the title
 'History of Calculation'. At a point in the development, I
 talked about Napier (1550-1617) and the invention of
 logarithms. I also used a rather quickly made paper slide rule
 (about three metres long) which proved very successful. A
 question that was asked by more than one person was 'How

 were the logarithms of numbers calculated?' I must admit
 that I had only vague ideas of how the first tables of
 logarithms were constructed and promised myself that I
 would investigate further and possibly write a short paper on
 my findings. Well, that was some time ago and my
 investigations over this time led me from one mathematical
 topic to another and from one reference to another (not
 always giving consistent information).

 Napier

 I shall start with Napier and his time, backtrack to very early
 times before I return to Napier to fill in some extra details.

 John Napier was born in Merchiston Castle near
 Edinburgh, Scotland in 1550. He was the Eighth Laird of
 Merchiston and so was not without means. He was educated

 at St Andrews University, Edinburgh. He then travelled
 through Europe whilst still young before returning home to
 Merchiston where he spent the rest of his life, dying in 1617.
 From this we can see that during his earlier years he was
 exposed to the learning of his day which served him well for
 his investigations in later life.

 Napier died 25 years before Newton was born and so
 didn't have the benefit of the tools of calculus. At this time,

 working with fractional quantities was very cumbersome
 and so mathematicians tried to work with whole numbers as

 far as possible. Napier himself invented the 'decimal point'
 which was to be of help to him in constructing his

 logarithmic tables. It must be said that the time was ripe for
 such an invention; in 1585 Simon Stevin had designed a
 precursor of decimal notation.

 Napier was a man with a curiosity. He designed
 mechanical artefacts (that weren't made), wrote early
 Science Fiction and wrote religious tracts among other
 things. The interests for which he is best remembered are
 'Napier's Bones or Rods' which were devices that made
 multiplication and division easier and his making of a table
 of logarithms. From this we can see that he was keenly
 interested in ways that the arithmetical operations of
 multiplication and division might be simplified.

 Before Napier

 At this time the scientific world was greatly interested in
 observational astronomy of which there was a long tradition
 going right back to the times of Ancient Egypt and the
 peoples of Ancient Mesopotamia. An important tool of the
 astronomer was a table of chords of a circle. Such a table

 gives the lengths of the chords corresponding to the angles
 subtended by those chords at the centre of the circle or the
 corresponding half-chords and half-angles. The earliest
 known table is on a Babylonian cuneiform tablet that dates

 back to the earlier half of the second millennium BE and lists
 the 'secants' of 15 angles between 45S and 30S.

 From then until Napier's time there was a continued
 improvement of both the completeness and accuracy of such
 tables. Of particular note is a table of Claudius Ptolemy's (of

 Almagest fame) (ca. 85-165) which lists central angles from O0
 to 180" in steps of 1/20 and their chord lengths. A table of
 chords is attributed to Hipparchus who flourished about 250

 years before Ptolemy and this may have been the inspiration
 for the latter's table. However, the table of Hipparchus has
 been lost. Continued improvements by Arabic and
 European mathematicians had by the time of Napier
 produced tables to 10 significant figures for every 10" of are.
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 Chord Tables

 P

 c'

 Fig. 1 We can create tables of chords or half-chords
 corresponding to the angles or half-angles that these

 chords subtend at the centre of the circle

 Table la

 Angle POP' Chord PP'

 O 0

 180 CC'

 or

 Table Ib

 Angle PON Half-chord NP

 o o

 90 OC

 These tables are very much like tables of sines, particularly

 Table lb. Originally the construction of such tables required
 a great amount of work involving the geometry of angles.
 Today we can construct such tables very easily using a
 spreadsheet, for example. Of course, that involves a lot of
 hidden mathematics; we are standing on the shoulders of
 giants who did the donkey work for us. At this point, it
 could be instructive to use a spreadsheet to construct the
 following chord table (Table 2) perhaps at intervals of 1S:

 Table 2

 Angle PON Half-chord NP

 90 107

 0 107 sin(0)

 o 0

 We have taken the radius of the circle to be 107 as did

 Napier, and we have constructed it so that we can combine it
 with Napier's logarithmic table.

 Although this work was developed over a long period of
 time, it represents a huge amount of work. What was it all
 for?

 It is not the purpose of this paper to look at how these
 chord tables were constructed. Suffice it to say that they
 were. What we wish to look at is how starting from these
 tables, Napier constructed the very first logarithm tables.

 As mentioned above this was a time of great work in

 observational astronomy and contemporaries of Napier
 included Tycho Brahe (1546-1601) in Denmark and

 Johannes Kepler (1571-1630) in Germany, among others.
 Their investigations led to calculations with numbers from
 the above-mentioned chord tables and any help that would
 reduce the slog of the arithmetic involved would have been
 greatly appreciated. Many of their calculations involved
 multiplications and divisions which were particularly
 tedious. It was Napier's inspiration to extend this chord
 table by adding extra columns which would reduce the
 operations of multiplication and division in trigonometry to
 addition and subtraction which are so much simpler to
 perform.

 Napier's Work

 First we shall define what Napier meant by a logarithm and
 we shall do this by referring to a geometrical model as he
 did. We shall use some modern notation rather than the
 terms that he used.

 A P x Z
 I I

 A' Y P

 Fig. 2

 As in Figure 2, take a half-line with origin A' and a line
 segment AZ. Now think of two particles p', p starting at the
 same time and moving to the right, the one at A' moving
 with constant speed and the other starting at A and moving
 according to the following rule. When particle p' has reached
 P' particle p has reached P such that the speed of p is
 proportional to the distance remaining to Z and the initial
 speed ofp is the same as the initial speed ofp', then

 y = naplog (x)

 where x = PZ and y = A'P' and 'naplog' refers to the

 logarithm ofx as defined by Napier.

 Notes:

 1. This definition could have been simplified if Napier had
 had access to Cartesian coordinates and the idea of

 moving particles could have been avoided.

 2. This is certainly not the definition of logarithms to base
 e that we know today although these are sometimes
 known as 'naperian logarithms' in honour of Napier but

 perhaps are better called 'natural logarithms'.

 3. This is a continuous model and would not have been easy
 to analyse without calculus.

 At this point Napier immediately moved on to a discrete
 model based on the above. Rather than thinking of particles
 moving smoothly along the above lines, Napier
 concentrated his attention on particular points on the two
 lines as in Figure 3.

 I _ 1 1 ! ! !

 A B C D E --. Z

 1 . . I I - A' B' C' D' E'

 Fig. 3
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 On the second line A', B', C', D', E', etc., are equally
 spaced and are reached successively in equal 'moments' of
 time. The corresponding positions on the first line are A,

 B, C, D, E, etc. (and the points are getting closer together).
 It should be noted that Napier did not have access to
 exponential notation and numbers such as 107 he would
 write as 10000000 (without spaces). For reasons of
 avoiding fractions and achieving the accuracy he
 wanted, Napier chose the length AZ to be 107 units. This
 also was an appropriate choice based on the chord tables
 that were available. A'B' and AB are essentially equal and

 on the scale chosen are equal to 1. Now from the above
 definition of'naplog' and the above units of length, we can
 write:

 BZ = 107 - 1

 = 107 (1-10-7) ... o

 AB BC
 AZ BZ

 1 BC
 107 (107 - 1)

 BZ = 1 - 10-7

 CZ = BZ - BC

 CZ = 107 (1 - 10-7)2 ...
 Similarly from

 AB CD
 AZ CZ

 we can obtain

 DZ = 107(1 - 10-7)3 ... a and so on.

 Hence we find the lengths AZ, BZ, CZ, ... are in
 geometrical progression with a common ratio of (1 - 10-7)
 corresponding to the lengths A'B', B'C', C'D', ... which
 are in arithmetic progression with a common difference of

 1. Essentially we now have the tools for constructing a
 logarithmic table where the numbers are represented by
 the lengths AZ, BZ, CZ, ... and their 'naplogs' by the
 lengths A'B', B'C', C'D', .... Perhaps it would be more
 accurate to say that we would be constructing an
 antilogarithm table as the numbers are 107, 107 (1 - 10-7),

 107 (1 - 10-7)2, 107 (1 - 10-7)3, ... and their corresponding

 'naplogs' are 0, 1, 2, 3, ....

 Napier thought that if he could calculate sufficient
 numbers from their 'naplogs' he could construct a table of
 naplogarithms by interpolations and other techniques. But
 how would he calculate such numbers as 107 (1 - 10-7)3?
 There was a way to simplify the calculations rather than
 successive multiplications by (1 - 10-7). Here is the
 background mathematics. The difference between two
 successive numbers is

 107 (1- 10-7)n+l - 107(1 - 10-7)n = -(1 - 10-7)n

 and this is equal to the negative of 107 (1 - 10-7)n divided by
 107. So Napier could calculate a number from the previous
 number by moving the decimal place in the previous
 number seven places to the left and then subtracting the
 result from the previous number.

 Here are the first few rows of such a table:

 Table 3

 Number Subtract Number Naplog

 10 000 000 1.000 000 0 10 000 000 0
 9 999 999 0.999 999 9 9 999 999 1

 9 999 998.000 000 1 0.999 999 8 9 999 998 2

 9 999 997.000 000 3 0.999 999 7 9 999 997 3

 9 999 996.000 000 6 0.999 999 6 9 999 996 4

 9 999 995.000 001 0 0.999 999 5 9 999 995 5
 9 999 994.000 001 5 0.999 999 4 9 999 994 6

 9 999 993.000 002 1 9 999 993 7

 Notes on Table 3:

 1. In the first column, 10 000 000 is the length of the radius
 from the chord table. Going down the table we get
 lengths of successive half-chords.

 2. The second column gives the number to be subtracted
 from the number to the immediate left in the first

 column to give the number to the lower left in the first
 column. The fractional parts of the numbers in the first
 column being dropped in calculating the second column
 number.

 3. The third column gives the integral part of the number
 in the first column which would have been that which

 Napier would have used.

 4. The final column gives the naplog of the corresponding
 number in the third column.

 5. The difference between the numbers in the third column

 from an AP would have been very little considering how
 close the common ratio is to 1.

 6. In modern terms, naplog(107sin(l')) = 81425 711. You
 might like to calculate this for yourself on a calculator
 using Napier's definition ofa 'naplog'. At a single step at
 a time in constructing Table 3, this would represent a
 hopeless task.

 7. However, it is possible to proceed at 100 or even 1000
 steps at a time. Let us look at the mathematics of this as
 we did above for a single step. We will look at the
 situation for 1000 steps.

 107 (1 - 10-7)n+1000 = 107 (1 - 10-7)n = ...

 = 107 (1 - 10-7)n(- 10-4 + terms less than 10-8)

 - -10-4 {107(1- 10-7)n}

 In words, Napier could calculate a number from the
 number 1000 before it by moving the decimal place in
 the previous number four places to the left and then
 subtracting the result from the previous number.

 8. The table can be extrapolated backwards for numbers
 greater than 10 000 000 to give negative naplogs.
 naplog(10 000 001) = -1, etc. to well within the accuracy
 for which Napier was seeking.

 9. Having obtained the naplogs of a number of numbers, he
 could easily find the naplog of the product of any two of
 these numbers. This would have been an important
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 technique in extending the table. But see the example on
 products below.

 10. If we look at the decimal digits to the far right of the
 numbers in the first column, we note that they form a
 sequence of triangular numbers. Perhaps this might have
 been used in finding numbers further down the column!

 It is instructive at this point to construct a simplified
 table of 'naplogs' with a spreadsheet. We will choose 103 as
 the radius of our circle which leads to a common ratio of

 (1- 10-3).

 Table 4

 Number Naplog

 103 0

 103 (1-10-3) 1
 103 (1-10-3)2 2

 103 (1-10-3)1SS 100

 The numbers in the first column of Table 4 can be

 calculated by using the formula 103(1 - 10-3)n where n is the
 value of the 'naplog' in the second column and it would be
 appropriate to calculate it to three decimal places.
 Alternatively, each successive number can be found by
 subtracting one thousandth of its predecessor from itself as
 described above.

 Try 'multiplying' two numbers from the left column with

 a calculator, add their 'naplogs' n/ + n2 from the second column and check against the result of this in the second
 column back into the first column. You will have to divide

 your result by 103 to adjust to the 'correct' result.

 N1N2 = 103(1 - 10-3)nl103 (1 - 10-3)n2
 = 106(1 - 10-3)nl+n2
 = 103 P

 You might investigate a similar procedure for division.

 It is clumsy, but it works and the table is not all that
 appealing. Napier spent more than 20 years to 1614
 performing all the calculations and interpolations and
 merging his results with a chord table. Be it noted that he
 didn't have the benefits of calculators or spreadsheets! The
 results of all his labours were 'Mirifici logarithmorum
 canonis descriptio' or, in English, 'A Description of the
 Wonderful Law of Logarithms', a table of logarithms with
 rules for their use.

 From the preceding, we see that Napier's main aim was to
 make the operations of multiplication and division easier
 when applied to trigonometric functions in a chord table. He
 proceeded to construct a table, the outline of which is given
 below:

 Table 5

 Arches Sines Naplog 3rd column- Naplog Sines Arches
 (arches) (sines) 5th col (sines) (arches)
 0 90

 45 45

 'Arches' (1st and 7th columns) refers to half the angle
 subtended by the chord at the centre of the circle and the

 table contained entries for every successive minute of arc.
 The sines (arches) columns (2nd and 6th) gave the half-

 chord lengths corresponding to the angles of the 1st column.
 The naplog (sines) columns (3rd and 5th) gave the naplogs
 of the corresponding numbers in the 2nd and 6th columns.
 The 4th column gave the result of subtracting the number in
 the 5th column from that in the 3rd column to give the

 naplog of the tangent of the corresponding angle in the 1st
 or 7th column.

 naplog{sin(0)} - naplog{sin(90 - 0)} = naplog{sin(0)/sin(90 - 0)}

 = naplog{sin(0)/cos(0)}

 = naplog{tan(0)}

 If we put a negative sign before a number in the 3rd or 5th
 columns, we obtain:

 -naplog{sin(0)} = naplog{cosec (0)}

 = naplog{sec(90 - 0)}

 In words, the negative of a number in the 3rd or 5th
 column gives the naplog of the secant of the angle in the 7th

 or 1st column.

 So from this table we can obtain the naplogs of the sines,
 tangents and secants of angles and hence the sines, tangents
 and secants from the 2nd and 6th columns.

 Further Developments

 Although there is much more that could be said about the
 structure of Napier's table, what has been said will be
 sufficient for the purpose of this article.

 The table was received with great enthusiasm when it was
 first published and in particular proved a boon for the
 astronomers of the time. Even 180 years later, Laplace gave
 it an accolade by describing it 'as doubling the life of the
 astronomer' because of all the time that was saved in
 simplifying calculations.

 In 1615 the year after the first publication of the tables,
 Henry Briggs travelled to Scotland to pay his respects to
 Napier and stayed there for a month before returning to
 London. Briggs was then Professor of Geometry at Gresham
 College in London. During this month, the two agreed that
 there would be much benefit in reconstructing the table so
 that the logarithm of 10 was 1 and the logarithm of 1 was 0.
 Thus was born the idea of Common or Briggsian logarithms

 which were to be used from the 1620's to well into the late
 1900's when the electronic calculator superseded logarithms
 for the purposes of calculation.

 It must be said that the 'time was ripe' (the end of the
 second decade of the 1600's) for a leap forward to better
 methods of making calculations. Briggs had produced a
 table of 14-figure logarithms in 1624. In 1620 Edmund
 Gunter who was a colleague of Briggs had produced a table
 of common logarithms of sines and tangents. Also at this
 time the first slide rules were made which depended for
 their working on the theory of logarithms.

 The final part of this article will be devoted to the ideas
 that Briggs used in constructing his table of common
 logarithms. Here it would be well to note the differences
 between Napier's original table and the table that was finally
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 published by Briggs in 1624. Napier's table was defined by a
 fixed point (the naplog of 107 was 0) and a common ratio of
 (1 - 10-7) as described above. Briggs' table had two fixed
 points corresponding to the numbers 1 and 10 whose

 Briggsian logarithms were 0 and 1. With this choice, Briggs
 ensured that his logarithms were ideally suited to the
 purposes of calculation as is testified by their longevity of
 use over many centuries. Briggs' table was not complicated
 with trigonometric considerations and so the whole concept
 was much simpler than that of the table devised by Napier.

 And now to some discussion of the ideas behind the table

 constructed by Briggs.

 The Calculation of Briggsian Logarithms

 We shall attempt to illustrate the thinking behind the work
 of Briggs by first of all finding the logarithm of a single
 number to the base of 10 and then indicate how this could
 have been used as the basis to calculate a whole table of

 logarithms.

 For our present purpose, we shall always regard log(x) as a
 logarithm to the base of 10 where the logarithm is the power
 to which 10 must be raised to give x.

 We shall try to find the value oflog(7). We emphasize that
 the only arithmetical operations that were available to
 Briggs were those of +, - , -, x, 4, and a lot of time and
 patience. The square root operation was particularly
 important as you will see.

 First, we shall construct the following table:

 Table 6

 Reciprocal of Power Power Number

 2 0.5 3.16227766

 4 0.25 1.77827941

 8 0.125 1.333521432

 16 0.0625 1.154781985

 32 0.03125 1.074607828

 64 0.015625 1.036632928

 128 0.0078125 1.018151722

 256 0.00390625 1.009035045

 512 0.001953125 1.004507364

 1024 0.000976563 1.002251148
 2048 0.000488281 1.001124941

 4096 0.000244141 1.000562313

 Notes on Table 6:

 1. The 1st column contains powers of 2.

 2. The 2nd column contains the reciprocals of those powers
 in decimal form. These values can be obtained by
 division.

 3. The numbers in the 3rd column are found by the process
 of finding successive square roots of first 10 and then the
 square root of that.

 3.162 277 66 = 410, 1.778 279 41 = 4410, etc.

 4. The values are worked out to 8 decimal places. Briggs
 worked to many more.

 5. Since 3.16227766 = 10'/2 then log(3.16227766) = 1/2 = 0.5

 and 1.333 52143 = 101/8 then log(1.333 52143) = 1/s = 0.125

 Armed with the above information, we can continue with
 our original problem of finding log(7).

 If we put 7 = 10x then we can write 7 = 101/2 x 2.213 594 36

 where 2.213 594 36 = 7/101/2 and 10 /2 = 3.162 277 66 was
 taken as the largest number in column 3 that is less than 7.

 We now deal with 2.213 594 36 in the same way and find
 that 2.213 59436 = 101/4x 1.244795 59.

 Then 1.244 795 59 = 101/16 x 1.077 948 57 and so on. We
 carry this on until we have achieved the desired accuracy.
 Back-substituting we find

 7= 101/2 x 101/4 x 101/16 x 101/32 x 1011/1024 x 101/4096 x ...

 when log(7) = 1/2 + 1/4 + 1/16 + 1/32 + 1/1024 + 1/4096 +...
 = 0.844 970 70

 which is correct to about 0.015%.

 Now we know how to find a logarithm. The above is
 essentially the process that Briggs used to calculate
 logarithms. Other tools that Briggs could have used were the
 'Laws of Logarithms', in particular log(mn) = log(m) +
 log(n) so that having calculated log(25) and log(7) he could
 find log(175) as log(25) + log(7), log(7000) would be
 log(1000 x 7) = 3 + log(7). Even then ten years of work was
 needed until in 1624 he finally published his 'Arithmetica

 logarithmica' being a 14-place table of common logarithms
 of the numbers from 1 to 20 000 and from 90 000 to 100 000.

 The gap from 20 000 to 90 000 was filled in during the next
 few years.

 And so here we have the story of the birth of logarithms.
 The motivation behind the construction of the tables above

 was an aid to calculating products and quotients. For Napier
 it was as an aid to calculations in trigonometry and hence to
 astronomy. It was a pity that Napier wasn't able to divorce
 the work of calculation from the trigonometry; he would
 have saved himself much work and time.

 Briggs saw a simpler solution but again was concerned
 with easing the calculations involved in multiplication and
 division. To both their credits, their work was used well into
 the late 20th century when the electronic calculator took over.

 The other face of logarithms is the background
 mathematical theory together with the corresponding
 theory of exponential functions. These provide powerful
 tools for studies in the physical, biological and social
 sciences. But that is a whole new story.
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